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In the present study, a new method is presented for estimation of lower flammability limit (LFL) of
pure compounds. This method is based on a combination of a group contribution method and neural
networks. The parameters of the model are the occurrences of a new collection of 105 functional groups.
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Basing on these 105 functional groups, a feed forward neural network is presented to estimate the LFL
of pure compounds. The average absolute deviation error obtained over 1057 pure compounds is 4.62%.
Therefore, the model is an accurate model and can be used to predict the LFL of a wide range of pure
compounds.

© 2009 Published by Elsevier B.V.
eural network
afety operational condition

. Introduction

Flammability characteristics of chemical compounds are needed
o design safe operational conditions in the chemical and petro-
hemical plants [1,2]. One of the most important flammability
haracteristics is lower flammability limit (LFL) of pure compounds
n air. Every combustible gas burns in air only over a limited range
f concentration. Lower than an especial concentration of the com-
ound in air which, is called lower flammability limit, the mixture
f the compound with air is too lean, and while above another
special concentration which, is called upper flammability limit
UFL) the mixture is too rich. The concentrations between these
wo limits constitute the flammable range. Therefore, to prevent
rom fire and explosion of a flammable gas, knowledge about LFL is
ritical.

The LFL depends on several factors such as nature of the com-
ound, the geometry of the apparatus, strength of the ignition
ource, the test temperature and pressure, degree of mixing, oxygen
oncentration, and concentration of the diluents [3–5]. Therefore
easuring the LFL requires the standard apparatus and several con-

itions as stated in ASTM-E681. On the other hands, the reported

alues of the LFL in the literature differs each other because they
re not measured in the exact conditions of ASTM-E681.

According to the ASTM-E681, measuring the LFL is time-
onsuming and expensive; therefore, application of computational

∗ Tel: +98 21 66957784; fax: +98 21 66957784.
E-mail addresses: fghara@ut.ac.ir, fghara@gmail.com.

304-3894/$ – see front matter © 2009 Published by Elsevier B.V.
oi:10.1016/j.jhazmat.2009.05.023
methods is necessary to develop an accurate method for estimation
of the property.

Several methods have been presented for estimation and predic-
tion of the LFL of pure compounds. Spakowski presented a model for
estimation of LFL based on standard heat of combustion (�Hcomb)
[1,6]. The model is:

LFL (%vol) = − 4354
�Hcomb

(kJ/mol) (1)

As reported by Albahri [7], application of this method for estima-
tion of 454 pure compounds respectively shows average deviation,
maximum deviation, average error, and squared correlation coef-
ficient of 1.35 (vol%), 14.02 (vol%), 12.3 (vol%), and 0.83. Jones
presented another method for estimation of LFL of pure compounds
based on the concentration of the flammable product for complete
combustion in air (Cest). This model is shown in Eq. (2).

LFL (%vol) = 0.55Cest (2)

This model showed better results in comparison with the
Spakowski’s method presented in Eq. (1). Base on evaluations of
Albahri [7], the Jones’ method respectively shows average devia-
tion, maximum deviation, average error, and squared correlation
coefficient of 0.07 (vol%), 5.7 (vol%), 6.13 (vol%), and 0.89 over the
same 454 pure compounds used to evaluate Spakowski’s method.
As stated by Sheldon [4], these two methods are only approxi-
mate and fail with low molecular weight compounds. Albahri [7]
presented a structural group contribution method for estimation
of LFL of pure compounds. In this model, 19 simple functional
groups were used to develop a model for estimation of LFL of pure

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:fghara@ut.ac.ir
mailto:fghara@gmail.com
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ompounds. This model respectively shows average deviation, max-
mum deviation, average error, and squared correlation coefficient
f 0.04 (vol%), 5.6 (vol%), 4.1 (vol%), and 0.93 over the same 454 pure
ompounds used to evaluate two previous models (Spakowski’s
ethod and Jones’ methods).

Recently, a quantitative structure-property relationship was
resented by one of the authors for prediction of LFL of pure com-
ounds [8]. To develop this model, 1057 pure compounds were
sed. The obtained model respectively shows average deviation,
aximum deviation, average error, and squared correlation coef-

cient of 0.35 (vol%), 3.36 (vol%), 7.8 (vol%), and 0.97 over all 1057
ure compounds.

All these methods are useful, but they have some disadvantages.
pakowski’s method and Jones’ method are very approximate and
btained based on a small group of compounds. These types of
ethods cannot generally be used for estimation of LFL. Perhaps,

he method presented by Albahri is the first accurate method for
stimation of LFL of pure compounds but, this method presented
nly for hydrocarbons therefore, application of this method for
ther compounds are not possible. The presented method by the
uthor is a comprehensive method (comprehensive means that this
ethod has no basic limitation in use for the chemical families of

ompounds) but, the method is not easy to use because the complex
rocedure for computation of parameters.

The aim of this study is to present a model based on a combina-
ion of a new collection of group contributions (for description of

olecular structure of pure compounds) and neural networks (to
btain an accurate model) for estimation of LFL of pure compounds.
erhaps, group contribution methods are simplest methods which
se only chemical structure of compounds for estimation of vari-
ty of properties in science and engineering. Therefore, major aim
n this study is to present simpler and more accurate method than
reviously presented methods for estimation of LFL of pure com-
ounds.

. Dataset preparation

The quality of an estimation method directly depends on the
uality of the dataset used for its development. There are many
ompilations for physical properties of pure compounds but, of
hem, DIPPR 801 [9] has some advantages. This database is the result
f a vast literature survey performed under supervision of American

nstitute of Chemical Engineers (AIChE). The most important advan-
age of this database is the performed evaluations over all collected
alues. The result of these evaluations is the unique recommended
alues for every physical property. Application of the database for
his study is found very useful therefore, 1057 pure compounds
ere found in this database and used for this study. This dataset

s the same like as the dataset used by the author in previously
resented model for prediction of LFL of pure compounds.

.1. Development of new group contributions

In this step, the chemical structures of all 1057 compounds were
nalyzed and finally, 105 functionally groups were found useful
o estimate the LFL. Perhaps, these functional groups are simplest
unctional groups selected from those functional groups proposed
nd used by various researchers in various versions of group contri-
ution methods for various physical properties. Application of these
unctional groups showed promising results in prediction of previ-

us flammability properties of pure compounds. Therefore these
arameters are used to present a new model for prediction of LFL
f pure compounds.

The functional groups found and used in this study and their
hemical structures are extensively presented in Table 1.
Fig. 1. The schematics structure of the three-layer feed forward neural network used
in this study.

These 105 functional groups and their numbers of occurrences in
pure compounds are presented as supplementary materials. These
functional groups are used as input parameters for the model.

2.2. Generation of neural network based-group contribution

When the group contributions table was provided, we should
find a correlation between these groups and the LFL of pure com-
pounds. The simplest method is to assume multi-linear relationship
between these groups and the LFL. This solution is the same method,
used in the classic group contribution technique. Application of this
methodology for this problem is failed. We could not find a good
model by this method. Therefore, application of nonlinear methods
such as neural networks was considered useful for this problem.

Neural networks are extensively used in various scientific and
engineering areas such as estimations of physical and chemical
properties [10]. These powerful tools are usually applied to study of
the complicated systems such as the problem defined here. The the-
oretical explanations about neural networks can be found in many
references such as ref. [11].

This solution is found useful and therefore, using the Neural Net-
work toolbox of the MATLAB software (Mathworks Inc. software),
three layer feed forward neural networks were evaluated for the
problem. The schematic typical structure of three layer feed forward
neural networks is presented in Fig. 1.

This type of neural networks has been used by one of the authors
in his previous works, therefore, the detail explanations about the
three layer feed forward used in this study can be found, else-
where [12–19]. The simplified form of the relationship between
input parameters and output of a three-layer FFNN can be shown
as Eq. (3).

ycalc(i) = (W2 × (tanh((W1 × Ti) + b1)) + b2 (3)

In this equation, T is the input matrix of dimension nparam × nds.
nparam is the number of functional groups (it is equal 105 in this
study) and nds is the number of available compounds of the training
set (it is equal 846 in this study). Ti is the ith-column of the Matrix
T. W1 is the fist weight matrix of the three layer FFNN and is of
dimension n × nds. n is the number of neurons in the hidden layer.
b1 is the first bias matrix of dimension n × 1. W2 is the second weight
matrix of output layer and is of dimension n × 1. b2 is the second
bias of output layer which is a scalar value. ycalc(i) is the ith-output
of this network which should be compared with ith-member of the
property.

All the 105 functional groups and the LFL values should be nor-
malized between −1 and +1 to decrease computational errors. This
work can be performed using maximum and minimum values of
every 105 functional groups for inputs and using maximum and
minimum values of the LFL for output. After this step, the main
dataset should be divided into two new datasets. These two datasets

include: training set and test set. The training set used to gener-
ate and optimized neural networks and the test set is used only
to check validity of the obtained model. The process of division of
main dataset into two new datasets is usually randomly performed.
For this purpose, 80% of the main dataset randomly selected for the
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Table 1
Functional groups used to develop the model.

No. ID Functional groups Comments

1 LFL001 Number of terminal primary C(sp3) Y = any terminal atom
or heteroaromatic group (i.e. H, X, OH, NH2, etc.)

2 LFL002 Number of total secondary C(sp3) Y = H or any heteroatom

3 LFL003 Number of total tertiary C(sp3) Y = H or any heteroatom

4 LFL004 Number of total quaternary C(sp3)

5 LFL005 Number of ring secondary C(sp3) Y = H or any heteroatom

6 LFL006 number of ring tertiary C(sp3) Y = H or any heteroatom

7 LFL007 Number of ring quaternary C(sp3)

8 LFL008 Sum of all the carbons belonging to any aromatic and
heteroaromatic structure

Number of aromatic C(sp2)

9 LFL009 Number of substituted benzene C(sp2) Y = carbon or any
heteroatom
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Table 1 (Continued )

No. ID Functional groups Comments

10 LFL010 Number of non-aromatic conjugated C(sp2)

11 LFL011 Number of terminal primary C(sp2) Y = any terminal atom
or heteroaromatic group (i.e. H, X, OH, NH2, etc.)

12 LFL012 number of aliphatic secondary C(sp2) Y = H or any
heteroatom

13 LFL013 Number of aliphatic tertiary C(sp2)

14 LFL014 Number of allenes groups

15 LFL015 Number of terminal C(sp) Y = any terminal atom or
heteroaromatic group (i.e. H, X, OH, NH2, etc.)

16 LFL016 Number of non-terminal C(sp) Y = C or any non-terminal
heteroatom

17 LFL017 Number of isocyanates (aliphatic)

18 LFL018 Number of carboxylic acids (aliphatic)

19 LFL019 Number of carboxylic acids (aromatic)

20 LFL020 Number of esters (aliphatic) Y = Ar or Al (not H) Al = H or
aliphatic group linked through C

21 LFL021 Number of esters (aromatic) Y = Al or Ar

22 LFL022 Number of primary amides (aliphatic) Al = H or aliphatic
group linked through C

23 LFL023 Number of secondary amides (aliphatic) Y = Ar or Al (not H,
not C = O) Al = H or aliphatic group linked through C
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Table 1 (Continued )

No. ID Functional groups Comments

24 LFL024 Number of tertiary amides (aliphatic) Y = Ar or Al (not H,
not C = O) Al = H or aliphatic group linked through C

25 LFL025 Number of aldehydes (aliphatic)

26 LFL026 Number of aldehydes (aromatic)

27 LFL027 Number of ketones (aliphatic)

28 LFL028 Number of ketones (aromatic) Y = Al or Ar

29 LFL029 Number of primary amines (aliphatic) Al = aliphatic group
linked through C (not C = O)

30 LFL030 Number of primary amines (aromatic)

31 LFL031 Number of secondary amines (aliphatic) Al = aliphatic
group linked through C (not C O)

32 LFL032 Number of secondary amines (aromatic) Y = Ar or Al (not
C O)

33 LFL033 Number of tertiary amines (aliphatic) Al = aliphatic group
linked through C (not C O

34 LFL034 Number of tertiary amines (aromatic) Y = Ar or Al (not C O)

35 LFL035 Number of N hydrazines Y = C or H

36 LFL036 Number of nitriles (aliphatic)
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Table 1 (Continued )

No. ID Functional groups Comments

37 LFL037 Number of positive charged N

38 LFL038 Number of hydroxyl groups Al = aliphatic group linked
through any atom

39 LFL039 Number of aromatic hydroxyls Ar = aromatic group linked
through any atom

40 LFL040 Number of primary alcohols

41 LFL041 Number of secondary alcohols

42 LFL042 Number of tertiary alcohols

43 LFL043 Number of ethers (aliphatic) Al = aliphatic group linked
through C (not C O, not C # N)

44 LFL044 Number of ethers (aromatic) Y = Ar or Al (not C O, not C #
N)

45 LFL045 Number of anhydrides (thio-) Y = O or S

46 LFL046 Number of thiols

47 LFL047 Number of sulfides

48 LFL048 Number of disulfides

49 LFL049 Number of sulfates (thio-/dithio-) Y = O or S

50 LFL050
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Table 1 (Continued )

No. ID Functional groups Comments

51 LFL051 Number of CH2RX

52 LFL052 Number of CRX3

53 LFL053 Number of X on aromatic ring

54 LFL054 Number of oxiranes

55 LFL055 Number of oxolanes

56 LFL056 Number of furanes

57 LFL057 Number of thiophenes

58 LFL058 Number of pyridines

59 LFL059 Sum of the hydrogens linked to all of the Os and Ns in the
molecul

Number of donor atoms for H-bonds (N and O)

60 LFL060 Total number of Ns, Os and Fs in the molecule, excluding N
with a formal positive charge, higher oxidation states and
pyrrolyl form of N

Number of acceptor atoms for H-bonds (N, O, F)

61 LFL061 CH3R/CH4
62 LFL062 CHR3
63 LFL063 CH3X
64 LFL064 CH2RX
65 LFL065 CHR2X
66 LFL066 CHRX2
67 LFL067 CR3X
68 LFL068 =CHX
69 LFL069 =CRX
70 LFL070 #CR/R C R
71 LFL071 R· · ·CR· · ·R
72 LFL072 R· · ·CX· · ·R
73 LFL073 R· · ·CH· · ·X
74 LFL074 R· · ·CR· · ·X
75 LFL075 R· · ·CH· · ·X
76 LFL076 R· · ·CR· · ·X
77 LFL077 Al–CH X
78 LFL078 R–C( X)–X/R–C#X/X C X
79 LFL079 Ha attached to C0(sp3) no X attached to next C
80 LFL080 Ha attached to C1(sp3)/C0(sp2)
81 LFL081 Ha attached to C2(sp3)/C1(sp2)/C0(sp)
82 LFL082 Ha attached to C3(sp3)/C2(sp2)/C3 (sp2)/C3(sp)
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Table 1 (Continued )

No. ID Functional groups Comments

83 LFL083 H attached to alpha-Cb

84 LFL084 Ha attached to C0(sp3) with 1X attached to next C
85 LFL085 Ha attached to C0(sp3) with 2X attached to next C
86 LFL086 Alcohol
87 LFL087 Phenol/enol/carboxyl OH
88 LFL088 O
89 LFL089 Al–O–Al
90 LFL090 Al–O–Ar/Ar–O–Ar/R· · ·O· · ·R/R–O–C X
91 LFL091 R–O–O–R
92 LFL092 Ar–NH–Al
93 LFL093 Ar–NAl2
94 LFL094 RCO–N</>N–X X
95 LFL095 Ar2NH/Ar3N/Ar2N–Al/R· · ·N· · ·Rc

96 LFL096 R#N/R N–
97 LFL097 R· · ·N· · ·R/R· · ·N· · ·Xc

98 LFL098 Fa attached to C3(sp3)
99 LFL099 Cla attached to C1(sp3)

100 LFL100 Cla attached to C1(sp2)
101 LFL101 Cla attached to C2(sp2)-C4(sp2)/C1(sp)/C4 (sp3)/X
102 LFL102 Bra attached to C1 (sp3)
103 LFL103 R2S/RS–SR
104 LFL104 R–SO–R
105 LFL105 R–SO2–R

Explanations: R represents any group linked through carbon; X represents any electronegative atom (O, N, S, P, Se, halogens); Al and Ar represent aliphatic and aromatic
groups, respectively; represents a double bond; # represents a triple bond; · · · represents an aromatic bond as in benzene or delocalized bonds such as the N–O bond in a
nitro group; · · · represents aromatic single bonds as the C–N bond in pyrrole.

a The superscript represents the formal oxidation number. The formal oxidation number of a carbon atom equals the sum of the conventional bond orders with electroneg-
a e one
o
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tive atoms; the C· · ·N bond order in pyridine may be considered as 2 while we hav
r furan may be considered as 1.
b An alpha-C may be defined as a C attached through a single bond with –C X, –C
c Pyrrole-type structure.

raining set and all other 20% is used for the test set. Regarding
he allocation percent of the test set from main dataset, it should
e noted that the researchers have been used various allocation
ercents of main dataset for the test set. For example, Albahri and
eorge [20] used 5% of the main dataset for the test set (20 com-
ounds from 490 compounds). In another work, Albahri [21] used
% of the main dataset for the test set (9 compounds from 200 com-
ounds). Besides these works, Gharagheizi et al. [8] used 10% of
he main dataset for the test set (137 compounds from 1378 com-
ounds). The effect of the allocation percent of test set from the
ain dataset on the accuracy of the neural networks has been

tudied by the author [22]. The results of this study show that
he percent of test set allocated from the main dataset should be
etween 5–35%. If this percent is lower than 5% the accuracy of the
odel over the training set is greater than the test set. Also, if the

ercent is greater than 40% the obtained model cannot predict the
est set as well as the training set. On the other hand the experi-
nces of the author show that the optimum percent of the test set
s dependent to the nature of the problem. During solving a prob-
em it should be used different percents of main dataset for the test
et. The optimum percent is the percent which the accuracy of the
odel over the test set approaches the training set.

Various percents of the main dataset were used for the test set.
f them, for several times, application of 20% of the main dataset

or the test set showed the least difference between accuracies of
he model over the test set and the training set. As a result, 20% of
he main dataset was used to the test set and all the others were
sed to the training set (211 compounds for the test set and 846
ompounds for the training set). These compounds were randomly
elected.

Using the train set and the test set the three layer feed forward

eural networks were applied to generate a model to predict LFL.

Generating a neural network means determination of the weight
atrices and bias vectors. As shown in the Fig. 1, there are two
eight matrices and two bias vectors in a three layer feed forward
eural network; W1 and W2, b1 and b2. These parameters should
such bond and 1.5 when we have two such bonds; the C· · ·X bond order in pyrrole

C–X.

be obtained by minimization of an objective function. The objective
function used in this study is the sum of squares of error between
the outputs of the neural network (estimated LFL) and the target
values (real LFL of those compounds). This minimization was per-
formed by Levenberg–Marquardt algorithm. This algorithm is rapid
and accurate in the process of training neural networks [9,10].

3. Results and discussion

By presented procedure in the previous section, an optimized
feed forward neural network was obtained for prediction of LFL.
For determination of the number of neurons of hidden layer of the
neural network, numbers 1–50 were checked and then the number
5 showed best results. Therefore, the best three layer feed forward
neural network has the structure 105–5–1. The mat file (MATLAB file
format) of the obtained neural network containing all parameters
of the obtained model can be freely accessible by email from the
author of this manuscript. The predicted LFL using this model in
comparison with the real values are shown in Fig. 2. Also these
values are reported as supplementary materials.

As shown in Fig. 2, the accuracy of the predicted LFL over the
training set and the test set is almost equal. This case shows that
the model is valid. In addition, the predicted LFL of 1057 pure com-
pounds and the DIPPR 801 values are very close to each others. The
case shows that the model is accurate in prediction of LFL of pure
compounds.

The results obtained by model are presented in Table 2. These
results show that the squared correlation coefficient, average abso-
lute deviation, standard deviation error, and root mean square error
of the model over the training set and the test set and the main

dataset are respectively 0.99%, 0.971%, 0.986%, 4.35%, 5.70%, 4.62%,
0.05%, 0.083%, 0.058%, 0.05%, 0.084%, and 0.058%. The average abso-
lute deviation error obtained by the model over all 1057 compounds
is shown in Fig. 3. As can be found, the obtained model is an accurate
model to predict the LFL of pure components.
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Fig. 2. Comparison between LFL predicted by the model and the DIPPR 801 data.

Table 2
Statistical parameters of the obtained model.

Statistical parameter Value

Training set
R2 0.99
Average absolute deviation 4.35%
Standard deviation error 0.05
Root mean square error 0.05
n 846

Test set
R2 0.971
Average absolute deviation 5.70%
Standard deviation error 0.083
Root mean square error 0.084
n 211

Training set + test set
R2 0.986
Average absolute deviation 4.62%
Standard deviation error 0.058
Root mean square error 0.058
n 1057

Fig. 3. The percent errors obtained using the presented model and number of pure
compounds in each range.
Materials 170 (2009) 595–604 603

Comparison between the obtained model and previously pre-
sented models shows that this model is more comprehensive than
Spakowski’s method and Jones’ method [1,5,6], because it has been
validated using a larger dataset. Also, it is more accurate than those.
In addition, the obtained model can predict the LFL of low molecu-
lar weight compounds that Spakowski’s method and Jones’ method
does not have this capability [4].

In comparison with the Albahri’s method [6], this model is more
comprehensive because on the contrary of Albahri’s method, the
applicability range of this model is not limited to the hydrocar-
bon compounds. Also, this model is validated using a dataset more
than two times larger than that used by Albahri (1057 vs. 454 pure
compounds). Also, this model shows better squared correlation
coefficient.

Also a comparison between this model and previously presented
model by one of the authors of this paper [7], shows that this model
is more accurate. Also, the computation of parameters of this model
is simpler than that model. Therefore, this model estimates LFL of
pure compounds more accurate than before.

4. Conclusion

In the presented study, a molecular-based model was presented
for prediction of LFL of pure compounds. The model is the result of a
combination between group contributions and feed forward neural
networks. The needed parameters of the model are the number of
occurrences of 105 functional groups in every molecule. It should
be noted that many of these 105 functional groups are not simul-
taneously available in a molecule therefore computation of these
parameters from chemical structure of every molecule is simple.
For developing the model, 1057 pure compounds were used. There-
fore, this model predicts LFL of every regular compound with some
limitations. These 1057 pure compounds cover many families of
compounds therefore the model has a wide range of applicability
but, application of the model is restricted to those compounds sim-
ilar to the compounds used to develop this model. Application of
the model for those compounds which is completely different from
compounds used to develop the model is not recommended.

Also, comparison between the presented model with the previ-
ously presented models shows that the model in comparison with
Spakowski’s method and Jones methods and also Albahri’s method
is more comprehensive and more accurate. Also, the comparison
between the model and the QSPR method previously presented by
the author (with the same dataset used in this study) shows that
this model is more accurate and is simpler to use. Also, this model
has lower outliers than that model.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jhazmat.2009.05.023.

References

[1] D.A. Crowl, J.F. Louvar, Chemical Process Safety Fundamentals with Applica-
tions, 2nd ed., Prentice-Hall, New Jersey, 2002.

[2] F.P. Lees, Loss Prevention in the Process Industries, 2, 2nd ed., Butterworth
Heinemann, Oxford, UK, 1996.

[3] Y.N. Shebeko, A.V. Ivanov, E.N. Alekhina, A.A. Barmakova, Calculation of upper
limits of concentration for organic compounds clouds inflammation in air, and
also heteroatomic compounds, Sov. Chem. Ind. 15 (1983) 599–600.

[4] M. Sheldon, A Study of the flammability limits of gases and vapors, Fire Preven-

tion 174 (1984) 23–31.

[5] S.Y. Liao, D.M. Jiang, Z.H. Huang, Q. Cheng, J. Gao, Y. Hu, Approximation of
flammability region for natural gas-air-diluent mixtures, J. Hazard. Mater. A125
(2005) 23–38.

[6] F.P. Bodhurtha, Industrial Explosion Prevention and Protection, McGraw-Hill,
New York, 1980.

http://dx.doi.org/10.1016/j.jhazmat.2009.05.023


6 rdous

[

[

[

[

[

[

04 F. Gharagheizi / Journal of Haza

[7] T. Albahri, Flammability characterstics of pure hydrocarbons, Chem. Eng. Sci.
58 (2003) 3629–3641.

[8] F. Gharagheizi, Quantitative structure-property relationship for prediction of
lower flammability of pure compounds, Energy Fuels 22 (2008) 3037–3039.

[9] Project 801, Evaluated Process Design Data, Public Release Documentation,
Design Institute for Physical Properties (DIPPR), American Institute of Chemical
Engineers (AIChE) 2006.

10] J. Taskinen, J. Yliruusi, Prediction of physicochemical properties based on neural
network modelling, Adv. Drug Deliv. Rev. 55 (2003) 1163–1183.

11] M. Hagan, M.H.B. Demuth, M.H. Beale, Neural Network Design, International
Thomson Publishing, 2002.

12] F. Gharagheizi, R.F. Alamdari, M.T. Angaji, A new neural network-group contri-
bution method for estimation of flash point, Energy Fuels 22 (2008) 1628–1635.
13] F. Gharagheizi, A new neural network quantitative structure-property rela-
tionship for prediction of � (Lower Critical Solution Temperature) of Polymer
Solutions, e-Polymers (2007), Article number 114.

14] F. Gharagheizi, A. Fazeli, Prediction of Watson characterization factor of hydro-
carbon compounds from their molecular properties, QSAR Comb. Sci. 27 (2008)
758–767.

[

[

Materials 170 (2009) 595–604

[15] F. Gharagheizi, R.F. Alamdari, A molecular-based model for prediction of sol-
ubility of c60 fullerene in various solvents, Fuller. Nanotub. Car. N. 16 (2008)
40–57.

[16] F. Gharagheizi, M. Mehrpooya, Prediction of some important physical properties
of sulfur compounds using QSPR models, Mol. Divers. 12 (2008) 143–155.

[17] F. Gharagheizi, B. Tirandazi, R. Barzin, Estimation of aniline point temperature
of pure hydrocarbons: a quantitative structure-property relationship approach,
Ind. Eng. Chem. Res. 48 (2009) 1678–1682.

[18] M. Sattari, F. Gharagheizi, Prediction of molecular diffusivity of pure compo-
nents into air: A QSPR approach, Chemosphere 72 (2008) 1298–1302.

[19] F. Gharagheizi, Prediction of standard enthalpy of formation of pure compounds
using molecular structure, Aus. J. Chem. 62 (2009) 374–381.

20] T. Albahri, R.S. George, Artificial neural network investigation of structural

group contribution method for predicting pure components auto ignition tem-
perature, Ind. Eng. Chem. Res. 42 (2003) 5708–5714.

21] T. Albahri, Structural group contribution method for predicting the octane num-
ber of pure hydrocarbon liquids, Ind. Eng. Chem. Res. 42 (2003) 657–662.

22] F. Gharagheizi, QSPR analysis for intrinsic viscosity of polymer solutions by
means of GA-MLR and RBFNN, Comput. Mater. Sci. 40 (2007) 159–167.


	A new group contribution-based model for estimation of lower flammability limit of pure compounds
	Introduction
	Dataset preparation
	Development of new group contributions
	Generation of neural network based-group contribution

	Results and discussion
	Conclusion
	Supplementary data
	References


